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Abstract

In this work an original procedure, based on the
boundary element method (BEM), is carried out for the full-
wave modal analysis of dielectric waveguiding structures
with arbitrary cross section. A new advantageous integral-
equation formulation is reached after a careful analysis of
the dyadic kernel’s discontinuities. Numerical solutions are
then derived by means of both conventional and novel
algorithms. Various results for important microwave
applications, compared to data from other numerical
approaches and from measurements, emphasize the notable
accuracy and efficiency of such implementation.

Introduction

The electromagnetic characterization of dielectric
waveguiding structures is an argument of remarkable
theoretical and practical interest, both for microwave and
for optics applications [1,2]. The modal properties
(propagation wavenumbers, field configurations, etc.) of
many different types of dielectric guides have widely been
analyzed in the literature. In particular, for analytically
non-solvable structures, a good deal of numerical techniques
have been proposed and discussed as regards the
characteristics of computing accuracy, versatility, efficiency,
etc. [3].

In this work, based on the boundary element method
(BEM), a new procedure is developed and applied to solve in
a complete, accurate, and efficient way the modal problem
for cylindrical dielectric structures having arbitrary cross
section.

As is known, on the one hand, the reduction of
complexity of one spatial dimension, which is typical of BEM
approaches, appears extremely convenient in terms of
memory space and computing time (4]; on the other hand,
problems could derive from rather involved pre-processing
and numerical convergency.

Compared with the BEM formulations already
outlined in the literature [5-7], the procedure that has here
been developed will present some important advantageous
distinctive features. In particular, through the present
formulation it ic poseible to reach a great flexibility in the
choice of the basis functions for the unknowns, thus
enlarging significantly the class of algorithms for the
numerical solution of the integral equations. To this aim, to
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eliminate some involved numerical problems, a deep
analysis on the singularities of the integral-equation kernels
(represented by dyadic Green’s functions) becomes
necessary. The numerical solution is then obtained through
different discretization techniques, both usual (point
matching and Galerkin’s methods [4,61) and unusual
(Nystrom’s method {8]), which are tested as concerns their
accuracy and efficiency properties.

This BEM procedure provides a new tool for full-wave
modal analysis of a variety of dielectric structures of
practical interest. Examples are here given concerning
different shapes of nonradiative dielectric (NRD) resonators
[9]. The accuracy and economy of the BEM results are
compared to data derived by other numerical techniques and
measurements. Specific attention is also paid to problems
that are extremely delicate from a computational viewpoint:
for instance, the effects of slight perturbations in the cross
section shape (e.g., notches or cuts) are tested, thus deriving
useful information for design of devices such as filters of
dual-mode type [10].

Description of the procedure of analysis

The boundary element method is here applied with a
view of obtaining the complete spectrum of guided modes for
dielectric structures of cylindrical type with arbitrary cross
section, as schematized in Fig. 1.

The basic formulation of the problem is based on the
equivalence principle, by expressing the fields in the interior
and exterior of the cylinder by means of free-space dyadic
Green’s functions, related to the different media which
occupy the two regions. By imposing the continuity of the
unknown tangential components of the electric and
magnetic fields on the air/dielectric interface, a couple of
integral equations on the separation surface is obtained.

According to the standard approaches, the longitudinal
symmetry shown by the structures of interest suggests a
common z-dependence exp(—jfz) for the unknowns. The
integration along z furnishes a Fourier transform and the
problem becomes two-dimensional. On the generic cross
section the position vector will be represented by ry (the
apex will be referred to source points); on the boundary s of
the section (where the integrations are extended), a local
rectangular coordinate system n,,l,2z, (normal, tangential,
and longitudinal unit vectors, respectively) may be chosen,
as shown in Fig. 1.
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Fig.1. Dielectric waveguiding structure of cylindrical type with
arbitrary cross section, analyzed with the boundary element method
(BEM). The local coordinate system on the boundary s and the other
introduced parameters are indicated.

The fields in the external (apex e) and internal (apex i)
regions can be expressed in the following integral forms (we
present for brevity only the expression for the electric field,
since it is possible to immediately deduce the magnetic field
by means of the duality principle):
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where the equivalent electric and magnetic currents J, and
Jn are defined as:
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and the transformed free-space dyadic Green’s functions G: !
are deduced from the two-dimensional scalar Green’s
function gy
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where: k2 = kZ— B2 ki =hkZe - P2, and k is the wave-
number of the medium in which the corresponding Green’s
function is calculated: i.e., k& = k, in the air (e region) and
k = kovEr in the dielectric (i region).

In spite of the relative simplicity of the BEM
formulation, the effective solution of the integral-equation
system presents considerable difficulties, both from the
analytical and the numerical point of view.

In connection with these questions, it should be
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pointed out that in the BEM procedures already presented
in the literature [5-71, the operations involving derivatives
on the Green’s functions are usually transferred to the
unknowns, so that the singularity degree of the integral
kernels is reduced. In the present formulation, on the
contrary, we have preferred to maintain the derivative
operations on the Green’s functions in order to make the
choice of the basis functions for the unknowns’ expansion
more flexible. As a consequence, this choice allows us to
significantly enlarge the class of the numerical techniques
that can be used for faster and more accurate solutions (this
argument is treated in detail in the next section).

The advantages of such a formulation require, on the
other hand, a large amount of analytical processing: in
particular, a specific attention has to be paid in evaluating
the influence of the kernel’s singularities, whose degree is no
more reducible. Since the dyadic Green’s functions diverge
when the source and the observation points coincide on the
boundary s, the integrals have to be evaluated in the limit
for which the observation point tends to the boundary from
the appropriate (external or internal) region. If the
boundary s is supposed to be represented through a
polygonal contour, this procedure of limit is applicable in a
rigorous way: it leads to suitable expressions for the
external and internal electromagnetic fields, which are
represented by the sum of various addenda. One of such
addenda requires the operation of ‘finite part’ on an integral’
[6]: this contribution is the most delicate to be calculated in
a numerical way, and therefore we have suitably combined
the equations to eliminate such a highly singular term.

Based on these considerations, we have reached the
following reference expression for the integral-equation
system, from which the numerical solution has been derived:
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All the terms of this pair of equations can be
integrated and evaluated numerically everywhere, except
for a neighborhood of the source point for which the
integration has been led analytically without
approximations.



Procedures for the numerical solution

The integral-equation expression that has here been
obtained describes rigorously the electromagnetic eigenvalue
problem for any dielectric waveguiding structure whose
contour can be reduced to a polygonal. As previously
discussed, the present formulation permits us to enlarge and
improve the numerical techniques for the solution.

By following the most common approach known in the
literature, at first the equation system has here been solved
through the method of moments (MoM) [4,61. Since here the
derivative operations on the unknowns have on purpose
been avoided, the most effective choice for their expansion
appears to be the linear combination of basis functions that
are piece-wise constant.

The easiest way for operating the testing is given by a
point matching, for which the continuity of the tangential
components is enforced on a number of points (chosen in the
middle of each integration sub-interval) equal to the number
of basis functions used for the unknowns’ expressions. A
solution approach has been developed also with Galerkin’s
method, where the testing functions are equal to the basis

functions, thus requiring a double integration through

standard techniques (Gauss methods) [8].

An interesting alternative procedure, which is not
applicable to the formulations already presented in the
literature (since the absence of derivations on the unknowns
is requisite), has consisted in an adaptation of the integral-
equation solution method due to Nystrom, which is based on
quadrature formulas [8]. Such technique neither requires
any set of basis functions for the unknowns, nor
developments of numerical integrations on the boundary.
Proper tests and comparisons among the different numerical
techniques that have here been employed have emphasized
that Nystrom’s method, by virtue of the described
advantages, generally presents characteristics of calculation
speed and accuracy that are strongly better than MoM.

As is typical for this kind of problems, once obtained a
homogeneous linear system through the discretization
operations, the eigensolutions for the electromagnetic field
are derived by enforcing the annulment of the determinant
of the coefficients’ matrix. From a numerical standpoint, the
location of these zeros is an ill-conditioned problem. The
most reliable results have here been obtained through the
evaluation of minima of the squared modulus of the
determinant, thus avoiding the very delicate numerical
research of complex zeros.

The convergence properties of all the described
algorithms have generally appeared quite satisfactory. This
allows us to achieve very accurate results, even when the
matrix dimensions are maintained rather limited.
Consequently, in particular with Nystrom’s implementation,

the relevant computation time results quite reduced in

comparigson with other usual numerical techniques (FEM,
mode matching, etc.).

Results and discussion
The above described procedure enables the

determination of the propagation characteristics for any
mode in arbitrarily-shaped dielectric waveguides. The same

procedure can easily be applied also for computing the
resonant frequencies of resonators of NRD (nonradiative
dielectric) type [9]. In fact, the NRD resonators can be
viewed as trunks of dielectric waveguides that are short-
circuited by two (infinite) parallel metal plates, placed
perpendicularly to the symmetry direction at a certain
distance apart a (usually chosen less than half the free-
space wavelength. In these situations, the 3 value is fixed by
the presence of the plates (B=mn/a, with integer m), and the
solution of the integral-equation system is possible only in
connection with specific discretized frequencies, that are just
at resonance.

Different typical examples have here been considered
for these NRD components in order to verify in
straightforward manner (also experimentally) the accuracy
of the described numerical method. All the BEM data that
will now be presented are derived through Nystrom’s
approach, due to its better performances.

A first class of examples concerns the dielectric
structures with rectangular section (transverse dimensions:
b and !). In Fig. 2 we show a modal chart for the resonant
frequencies f as functions of the length [ of parallelepiped
NRD resonators, with a fixed choice of the distance between
the plates @ and of the width b (the case of symmetry with a
longitudinal electric ideal wall is presented).

Frequency f [GHz]
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Fig.2. BEM: behavior of the frequencies f of resonant modes as a
function of the length ! of an NRD resonator having a rectangular section
of dimensions b and [, for a fixed choice of the height a between the plates
and of the width b (case of insertion of a longitudinal perfect electric wall).

Parameters: £=2.53; b=10 mm; a=12.3 mm.

As a further significant check of the possibilities of the
investigated approach, we have also considered dielectric
structures with a circular section, which has been
approximated through polygons with a sufficiently high
number of sides. A typical example is presented in Table I
for a disc NRD resonator (radius R, height a), concerning the
frequencies f of the hybrid modes HE M, in the usual
NRD operating range [9] (the indices n,p,m are referred to
the angular, radial, and axial variations, respectively). The
accuracy of the BEM values is expressed through the
relative error, which is evaluated with respect to the results
derived by a classical rigorous approach for the circular
geometry, based on the straightforward solution of
eigenvalue transcendental equations [9]. The agreement
between BEM and ‘exact’ data appears to be remarkable.
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Modes BEM Values Error
HEM npm f(GHz] %
HEM 111 9.225 -0.03
HEM 011 10.698 0.00
HEM 021 11.137 -0.01
HEM 211 11.335 -0.02

Table I. BEM: computation of the resonant frequencies f /GHz] for the
first modes of an NRD resonator having a circular section of radius R and
a fixed height a, and relative error with reference to ‘exact’ data.

Parameters: =2.53; R=11 mm; a=12.3 mm.

The method has also been tested by considering
dielectric structures having non-conventional shapes. In
particular, slight perturbations in the geometry of typical
cross section of dielectrics have recently found an increasing
interest in specific advanced microwave devices; e.g.,
compact high-performance filters of dual-mode type can be
obtained making use of dielectric resonators that have
notches or cuts altering their rotation symmetry: the effect
of a proper geometrical perturbation on a circular or square
resonator consists in the separation of the same degenerate
modal frequency into a pair of close frequencies (‘quasi-dual
modes’) [10].

The accurate prediction of the location of such close
resonances as a function of the small perturbations, which is
a basic requisite for filter design, represents a very difficult
task to be solved with numerical procedures. The example
that has been presented in Fig. 3 is referred to a notched
square-section NRD resonator (side /=b, height a, corner’s
symmetric cut amplitude d): the BEM approach enables us
to precisely calculate the variation of the location for the
quasi-dual resonant frequencies f7 and /3 as a function of the
amplitude d of the geometrical perturbation: the greater the
notch, the larger the frequency separation. The
experimental investigation on such components [10] has
shown the agreement with this theoretical behavior.
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Fig.3. BEM: variation of the quasi-dual resonant frequencies f; and f»
for a square-section NRD resonator as the amplitude d of the corner’s cut
varies. Parameters: £.=2.53; [=b=10 mm; a=12.3 mm.

Conclusion

Even though the boundary element method is in
principle a well-grounded technique for solving efficiently a
variety of electromagnetic problems, in practice a great deal
of difficulties can arise from a numerical point of view. The
BEM procedure that has here been developed allows us to
reach the complete modal characterization of arbitrarily-
shaped waveguiding structures making use of a novel
formulation, which considerably improves the computational
speed, convergence, and accuracy.

These important advantages have been -achieved
through an analytical development that allows us to
profitably avoid derivative operations on the unknowns. To
reduce the phenomena of numerical instability, a delicate
theoretical evaluation of singular terms has been necessary.
The numerical solution has then been possible by developing
alternative methods of discretization. An implementation
based on Nystrom’s method, which avoids numerical
integrations, has furnished very fast, economic, and precise
results, as confirmed by comparisons with reference
theoretical and experimental data for various dielectric
structures employed in practice.

Even compared to well-stated rigorous numerical
methods (finite elements, mode matching, etc.), this new
BEM formulation has proved to be a valid and useful tool for
very accurate, efficient, and versatile analysis of a vast class
of waveguiding structures.
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